Dense Molecular Gas: A Sensitive Probe of Stellar Feedback Models
نویسندگان
چکیده
We show that the mass fraction of giant molecular cloud (GMC) gas (n 100 cm−3) in dense (n 104 cm−3) star-forming clumps, observable in dense molecular tracers (LHCN/LCO(1–0)), is a sensitive probe of the strength and mechanism(s) of stellar feedback, as well as the star formation efficiencies in the most dense gas. Using high-resolution galaxy-scale simulations with pc-scale resolution and explicit models for feedback from radiation pressure, photoionization heating, stellar winds and supernovae (SNe), we make predictions for the dense molecular gas tracers as a function of GMC and galaxy properties and the efficiency of stellar feedback/star formation. In models with weak/no feedback, much of the mass in GMCs collapses into dense subunits, predicting LHCN/LCO(1–0) ratios order-of-magnitude larger than observed. By contrast, models with feedback properties taken directly from stellar evolution calculations predict dense gas tracers in good agreement with observations. Changing the strength or timing of SNe tends to move systems along, rather than off, the LHCN–LCO relation (because SNe heat lower density material, not the high-density gas). Changing the strength of radiation pressure (which acts efficiently in the highest density gas), however, has a much stronger effect on LHCN than on LCO. We show that degeneracies between the strength of feedback, and efficiency of star formation on small scales, can be broken by the combination of dense gas, intermediate-density gas and total star formation rate (SFR) tracers, and favour models where the galaxy-integrated star formation efficiency in dense gas is low. We also predict that the fraction of dense gas (LHCN/LCO(1–0)) increases with increasing GMC surface density; this drives a trend in LHCN/LCO(1–0) with SFR and luminosity which has tentatively been observed. Our results make specific predictions for enhancements in the dense gas tracers in unusually dense environments such as ultraluminous infrared galaxies and galactic nuclei (including the
منابع مشابه
Resolving the Generation of Starburst Winds in Galaxy Mergers
We study galaxy super-winds driven in major mergers, using pc-scale resolution simulations with detailed models for stellar feedback that can self-consistently follow the generation of winds. The models include molecular cooling, star formation at high densities in GMCs, and gas recycling and feedback from SNe (I & II), stellar winds, and radiation pressure. We study mergers of systems from SMC...
متن کاملGalaxies on FIRE (Feedback In Realistic Environments): Stellar Feedback Explains Cosmologically Inefficient Star Formation
We present a series of high-resolution cosmological zoom-in simulations1 of galaxy formation to z = 0, spanning halo masses Mhalo ∼ 108 −1013 M and stellar masses M∗ ∼ 104 −1011 M . Our simulations include a fully explicit treatment of both the multi-phase ISM (molecular through hot) and stellar feedback. The stellar feedback inputs (energy, momentum, mass, and metal fluxes) are taken directly ...
متن کاملCarbon Chemistry in Dense Molecular Cwuds: Theory and Observational Constraints
fur the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. We present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular atte...
متن کاملThe Formation of Stellar Clusters: Time Varying Protostellar Accretion Rates
Identifying the processes that determine strength, duration and variability of protostellar mass growth is a fundamental ingredient of any theory of star formation. I discuss protostellar mass accretion rates Ṁ from numerical models which follow molecular cloud evolution from turbulent fragmentation towards the formation of stellar clusters. In a dense cluster environment, Ṁ is strongly time va...
متن کاملChemistry in Dense Molecular Clouds: Theory and Observational Constraints
For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. We present a brief review of the basic assumptions and results of large scale modeling of the chemistry in dense molecular clouds. Particular attention w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017